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Carbon Monoxide and Hospital Admissions for Congestive Heart Failure:
Evidence of an Increased Effect at Low Temperatures
Robert D. Morris and Elena N. Naumova
Department of Family Medicine and Community Health, Tufts University School of Medicine, Boston, MA 02111 USA

The combined effects of carbon monoxide and low temperature on daily variation in hospital
admissions for congestive heart failure (CHF) were examined for a 4-year period in Chicago,
Illinois. Medicare hospital admissions for CHF were analyzed as a function of the maximum
hourly temperature, maim hourly levels of carbon monoxide (CO), and other criteria pollu-
tants in Chicago for each day of the 4-year period (1986-1989). The gression analyes for the
time series were conducted using single and multipollutant models with intrtion terms and
adjustments for weather, weely cycles, seasonal effects, and secular trend. The data were also
grouped into three temperature ranges, <40°, 40-75o, and >750 F, and the relationship
beten CO and CHF admission was evaluated for each range. For te 4-year time series, the
CO level was positively assciated t h il admissions for CHF in thesingle. pollutant and
multipollutant models after adjustent for seasonal efficts and weather pemrn. The relative
risk of hospital admissions for tCHFin Chicago associated with tie 75thcenile of posure
to CO in the high, medim and low temperature ranges were 1.02 [9% fid interval
(CI), 0.95-1.10], 1.09 (CI, 1.04-1.14), and 1.15 (CI, 1.09-1.22), respetivl. In these data, the
effect ofCO on hospital admissions for CHF was temperature ddent, wit the magnitude of
the effect increasing with decreasing temperature. This synergy may help to explain the associa-
tion between ambient CO and CHF admissions demonstrated in other studies. Key wordn air
pollution, carbon monoxide, elderly, heart failure, Medicare, synergy, temperature, time series.
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Studies of the health effects of air pollution
generally seek to isolate the specific health
effects of a single air pollutant or group of air
pollutants. To accomplish this, researchers
use a variety of analytic tools to eliminate
the effect of potential confounders. It is pos-
sible, however, that environmental stressors
may act synergistically with air pollutants to
cause morbidity and mortality. In this study,
we sought to explore this possibility with
respect to the health effects of carbon
monoxide (CO) and temperature on cardio-
vascular disease.

The adverse effects of carbon monoxide
have long been recognized (1). Its cardiovas-
cular effects have been demonstrated in labo-
ratory (2,3) and epidemiological studies (4,5).
Several recent studies have shown that hospi-
tal admissions for cardiovascular disease, par-
ticularly congestive heart failure (CHF),
increase with increasing ambient CO concen-
trations (6-8).

Exposure to the cold air also has well-doc-
umented cardiovascular effects. Numerous
studies have shown seasonal increases in car-
diovascular disease mortality during the win-
ter and in areas with lower mean tempera-
tures (9-11). These increases in mortality
probably reflect the increased load on the car-
diovascular system associated with peripheral
and central cooling.

It is certainly plausible that the stress of
cold weather could increase one's sensitivity
to the adverse effects of CO. This combined

effect could be even more pronounced in a
person with underlying cardiovascular dis-
ease. In this study we explored the com-
bined effect of cold temperatures and air
pollution on hospital admissions for CHF
using data from Chicago, Illinois.

Methods
The data set used for statistical analysis con-
sisted of daily counts of hospital admissions
for CHF and ambient measurements of
CO, sulfur dioxide (SO2), nitrogen dioxide
(NO2), ozone, particulate matter <10 pm
(PM10), temperature, and humidity from
Chicago. The data and their analyses are
described below.

Outcome measures. The Health Care
Financing Administration (HCFA) main-
tains records on the utilization of inpatient
hospital services that are covered by Medicare
in a database known as the MEDPAR
(Medicare Provider Analysis and Review) file.
All admissions for residents of Cook County,
Illinois, over the age of64 with a primary dis-
charge diagnosis of CHF (International
Classification ofDiseases, 9th revision-CM,
428) were selected from the MEDPAR files
for the period 1986 through 1989. We deter-
mined the number of CHF admissions for
each day in the entire 4-year period. For con-
gestive heart failure, MEDPAR records have
been estimated to have a sensitivity of 85%
and a predictive value of 87% when com-
pared to an independent chart review (12).

Errors in diagnosis can occur either when
the records list CHF patients with some other
diagnosis (false negative) or when they give a
diagnosis ofCHF to patients with other con-
ditions (false positive). Neither error type is
likely to vary with the exposures of interest.
The false negative will reduce the number of
data points and will widen the confidence
intervals around individual statistics. The
false positive can either result in an understi-
mate of risk (if the true diagnosis is unrelated
to the exposure) or an overestimate of risk (if
the true diagnosis is related to the exposure).
Given the relatively high predictive value of
this diagnosis, it is highly unlikely that this
type of bias played an important role in our
analysis.

Exposure measures. We extracted ambi-
ent air quality data for Cook County from
the Aerometric Information and Retrieval
System (AIRS), which is maintained by the
National Air Data Branch of the U.S. EPA.
The CO monitoring network indudes eight
sites, six of which are located in downtown
Chicago (13). Hourly measures ofCO were
obtained for all monitoring sites. The maxi-
mum hourly values for these sites were
determined, and an average of these maxima
was calculated for each day. We used the
same approach to describe ambient levels of
other pollutants. The Cook County net-
work had only one station where daily mea-
surements of PM10 were available. Daily
maximum temperature and relative humidi-
ty data were obtained from the National
Weather Service. In the 4-year period
(1986-1989), data were available for 80%
of days for PM1O and for 100% of the days
for other pollutants and for weather charac-
teristics. Ambient levels are an extremely
crude measure of personal exposure to air
pollutants. The resulting misclassification of
exposure will be random and will tend to
bias our results toward the null.

Analysis. We generated descriptive statis-
tics for all variables. The linear correlations
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between temperature and air pollutant con-
centrations were also calculated. To evalu-
ate the significance of the quadratic and
higher order terms in the temperature-pol-
lutant relationship, a generalized additive
model (GAM) with the orthogonal polyno-
mial of 6 degrees was performed (14).

To investigate the independent effect of
ambient pollutant and temperature on CHF
admission, we used the generalized linear
model (GLM) for time series data as
described in detail elsewhere (6). To adjust
for weekly cycles, seasonal effects, and secu-
lar trend, indicator variables for the day of
the week, month, and year were included in
the model. To account for potential overdis-
persion related to the Poisson regression, the
negative binomial approach for the outcome
distribution was performed (15). We per-
formed GLMs for each pollutant separately
(single pollutant model) and for all pollu-
tants combined (multipollutant model). To
determine if there was a lag in the associa-
tion, GLMs were performed for individual
pollutants at lags of 1, 2, and 3 days.

The possible synergy of low tempera-
ture and high levels of CO on CHF was
evaluated in three ways: 1) inclusion of a
variable representing the product of tem-
perature and CO concentration in the
GLM, 2) simultaneous analysis of both
variables in a GAM to generate an additive
surface, and 3) an analysis following strati-
fication according to ambient temperature.

To describe this relationship on a con-
tinuous scale, a GAM model with the Loess
smoother (16) was used to construct an
image-plot of the bivariate surface (14,17).
The surface describes predicted estimates of
CHF admissions as a function of tempera-
ture and ambient CO levels. This model
included the same terms as the multipollu-
tant GLM described above.

Although the surface gives a more com-
plete description of the interactive relation-
ship, it does not provide a simple, quantita-
tive comparison of the CO effect in differ-
ent temperature ranges. Therefore, possible
interactions were also examined using a
stratified analysis with the data grouped into
three temperature ranges. The cut points for
stratification were <40°, 40°-75°, and >75°F

and were based on statistical and biological
considerations. The groupings correspond
to the lowest quartile, the middle two quar-
tiles, and the upper quartile of the tempera-
ture distribution. The temperature distribu-
tion was binomial with two well-defined
modes: 390 and 800. The choice of cut
points was also tested using regression tree
analysis (18). This model suggested cut
points of 450 and 75°. Sensitivity analysis
showed that shifting the cut points by 50 in
either direction or stratification into quar-
tiles did not alter our basic conclusion. The
lower cut point at a daily maximum temper-
ature of 40°F corresponds to a daily average
of 32°F in Chicago, a temperature with dear
biological relevance. The biological basis for
defining an upper cut point is less clear.
Research on thermal comfort has described a
range of indoor temperatures at which the
majority of people feel comfortable, refer-
ring to it as the comfort zone (19). In defin-
ing our highest temperature group, we chose
temperatures above the upper end of the
comfort zone, 75°F.

For each temperature strata the effect of
CO on CHF was evaluated using a GLM
and GAM. CHF admissions, predicted by
the GAM with the loess smoother, were
plotted as a function of ambient pollutant
levels for each temperature stratum.
Ultimately, any choice of cut points will be
somewhat arbitrary, so the stratified analy-
sis should be considered as a complement
to the image plot.

Although relative risks are frequently
used to describe the effect of an air pollutant
based on the results of multivariate model-
ing, the calculation of a relative risk under
these circumstances requires the selection of
a single level of exposure. The selection of
this value and the resulting relative risk esti-
mate are inherently arbitrary. To better
describe the relationship between exposure
and risk, relative risks were estimated in rela-
tion to the actual probability of exposure.
The distribution of measurements for each
pollutant within each temperature stratum
was divided into 20 quantiles. The relative
risk for each quantile was calculated based on
the results of the GLM. Relative risks were
plotted as a function of exposure percentile.

Table 1. Summary statistics for daily levels of pollutants and daily counts of hospital admissions for con-
gestive heartfailure (CHF) in Chicago, Illinois, from 1986-1989

Minimum 25th Percentile Median Mean 75th Percentile Maximum
CO (ppm) 0.679 1.807 2.316 2.509 3.054 8.698
N02 (ppm) 0.013 0.035 0.043 0.044 0.053 0.110
SO (ppm) 0.001 0.017 0.023 0.025 0.030 0.091
03 tppm) 0.002 0.022 0.034 0.039 0.051 0.137
PM10 (ppm) 6 28 38 41 51 117
Temperature (OF) -5 39 56 56 74 103
Humidity (%) 48 83 90 88 96 100
CHF admissions 11 27 33 34 40 74

Temperature alone does not fully
describe thermal stress. Therefore, we
repeated the above analyses, replacing tem-
perature with wind chill index and effective
temperature. The wind chill index is an
empirically derived expression that is a
function of temperature and wind speed.
Effective temperature is a function of tem-
perature and humidity.

Standard regression diagnostics for the
GLMs were evaluated. Residuals from the
GLMs were checked for autocorrelation.
As an additional check, all models were
recalculated with an autoregressive compo-
nent (20). The order of the autoregressive
component was selected from a full autore-
gressive model by the Akaike information
criteria (21). The estimation of the model
parameters was implemented by the iterat-
ed reweighted least square (IRLS) algo-
rithm (17). All analyses were conducted
using S-plus (22).

Results
Table 1 lists summary statistics for CO,
SO2, NO2, 03, PM1O, temperature, relative
humidity, and CHF admissions. Admission
counts ranged from 11 to 74 per day, with
an average of 34. Average counts were
highest on Mondays (42 ± 10) and lowest
on Sundays (25 ± 6). CO also had well-
defined day-of-the-week effect with the
lowest level on weekends (1.96 ± 0.8) and
highest on Fridays (2.76 ± 1.1).

Temperature had correlations with CO,
NO2, SO2, 03, and PMIO of 0.05, 0.41,
0.03, 0.76, and 0.39, respectively. For CO
and temperature, neither the linear nor the
quadratic term was significant in the polyno-
mial model. The correlation between tem-
perature and CHF admissions was -0.18.

In the GLM, pollutant levels consistent-
ly had their strongest effect on CHF admis-
sions at a lag of 0 days. This effect decayed
very rapidly with the introduction of lags of
increasing magnitude (from 1 to 3 days).
Therefore, lags were not considered in sub-
sequent analyses. The GLMs did not exhib-
it significant autocorrelation of residuals.

As shown in Table 2, CO was the only
gaseous pollutant that was significant in

Table 2. The relative risks and 95% confidence
intervals (Cl) of congestive heart failure admis-
sions associated with exposure to the 75th per-
centile of daily maximal pollutant level based on
results of single and multipollutant models

Single pollutant model Multipollutant model
Relative risk (Cl) Relative risk (Cl)

CO 1.09(1.06-1.12) 1.08(1.03-1.12)
NO2 1.04(1.01-1.06) 0.97(0.94-1.01)
SO2 1.09(1.05-1.13) 1.02(0.96-1.10)
03 1.03 (0.99-1.07) 1.00 (0.95-1.05)
PM10 1.04 (1.01-1.07) 1.02 (0.99-1.06)
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both the single and multipollutant models.
The relative risk of CHF admissions associ-
ated with exposure to the 75th percentile of
CO (as compared to an exposure to a con-
centration of zero) were 1.09 [95% confi-
dence interval (CI), 1.06-1.12] and 1.08
(CI, 1.03-1.12) in single pollutant and mul-
tipollutant models. Indusion of the interac-
tion term increased these values to 1.10 (CI,
1.05-1.15) and 1.09 (CI, 1.04-1.16),
respectively.

Figure 1 shows an image plot of the
results of the GAM predicting CHF admis-
sions as a function of temperature and CO
level. The plot demonstrates a general pat-
tern of increasing effect of CO on admis-
sions as the temperature decreases.

Using the GLM for CO alone after strat-
ification by temperature, the relative risk of
CHF admissions associated with exposure to
the 75th percentile of CO were 1.02 (CI,
0.95-1.10), 1.09 (CI, 1.04-1.14), and 1.15
(CI, 1.09-1.22) in the high, medium, and
low temperature ranges, respectively. The
corresponding values for the multipollutant
model were 1.01 (CI, 0.92-1.11), 1.07 (CI,
1.01-1.13), and 1.09 (CI, 1.01-1.18). The
results of the GAM for the multipollutant
model stratified by temperature as shown in
Figure 2 indicate that CHF admissions
increased with decreasing temperature.

Figure 3 shows the relative risk associated
with the exposure percentiles of CO at spe-
cific temperature strata for both the single
pollutant and multipollutant model. Figure
3 combines the probability distribution of
CO in each temperature strata with the risks
associated with those levels of CO in that
temperature range. This yields three curves
that describe the CO-related risk as a func-
tion of the probability of that specific CO
level within a given temperature range. For
example, in the single pollutant model, the
95th percentile of CO levels when tempera-
tures are below 400 is 4.5 ppm, and based on
the GLM, this level ofCO has a relative risk
for hospital admissions of 1.21. In the tem-
perature range of 40°-75°, the 95th per-
centile ofCO is 4.1 ppm and the relative risk
is 1.11. Overall, these curves demonstrate
that the majority of the increased risk of
CHF admissions associated with ambient
CO occurs at temperatures below 400 and
that there is minimal effect of CO when
temperatures exceed 75°. The replacement of
temperature with effective temperature or
wind chill index did not substantially alter
the above results.

Discussion
These results suggest that the association of
ambient CO concentration with the num-
ber of hospital admissions for CHF is
temperature dependent, increasing with
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Figure 1. The image-plot of the bivariate surface reflecting the combined effect of carbon monoxide and
temperature on hospital admissions for heart failure among the elderly in Chicago, Illinois, constructed by
generalized additive model with the Loess smoother.
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Figure 2. The results of the generalized additive model of hospital admissions for congestive heart failure
(CHF) among the elderly as a function of carbon monoxide in Chicago, Illinois, plotted using Loess
smoothing after stratification by temperature.
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Figure 3. The relative risk associated with the exposure percentiles of carbon monoxide at specific tem-
perature strata based on results of the (A) multipollutant and (B) single pollutant generalized linear mod-
els of hospital admissions for heart failure among the elderly in Chicago, Illinois.

decreasing temperature. A synergistic effect
of exposure to cold air with CO exposure is
biologically plausible and may help to
explain the overall association of ambient
CO levels with CHF admissions (6-8).

An association between ambient CO
and CHF admissions has been demonstrat-
ed in 8 U.S. cities (6,8) and in 10 Canadian
cities (7). The consistency of this effect sug-
gests that exposure to ambient CO or some
exposure that is closely correlated to ambi-
ent CO results in an acute worsening of
CHF. Any assertion that CO could play a
causal role must include an explanation of
the fact that the observed association with
CHF occurs at levels of CO below current
federal standards and well below levels at
which effects have been observed in labora-
tory studies. Several factors could help to
explain this apparent inconsistency.

First, levels at ambient monitors poorly
represent individual exposures. It is well
documented that individual exposures can
be far higher than those measured at ambi-
ent monitors (23), especially those of per-
sons in traffic (24). Days with heavy traffic
and unfavorable meteorological conditions
will increase ambient levels of CO, but can
also increase extreme exposures experienced
by automobile passengers. In other words,
elevated levels at ambient monitors trans-
late to a shift in the distribution of individ-
ual exposure and a greater probability of
individual exposure to elevated levels.

Second, persons with CHF may be
uniquely susceptible to CO. Most studies
of the effects of CO have been conducted

among healthy young and middle-aged
adults. Those studies that have considered
persons with heart disease have focused on
subjects with coronary artery disease rather
than CHF. A review of the literature failed
to identify any laboratory studies of the
effects ofCO on persons with CHF.

Third, the presence of additional stres-
sors may modify the effect of CO. The cur-
rent study indicates that low temperatures
may act in this way. Essentially all of the
chamber studies of the effect of CO have
been conducted at room temperature. Our
study found little or essentially no effect of
CO in this temperature range. This raises
questions about the applicability of
dose-response data from laboratory studies
to cold weather conditions.

The epidemiological evidence related to
an interaction between temperature and CO
is also limited. In a study of hospital admis-
sions for cardiovascular disease in Toronto,
Burnett et al. (25) found that the effect of
CO was weak when analyses were limited to
summertime, consistent with our finding of
diminished effect at warmer temperatures.
In a study of cardiovascular mortality in Los
Angeles, California, Shumway et al. (26)
concluded that the rate of increase in mor-
tality associated with CO at low tempera-
tures was greater than the rate at higher tem-
peratures. It has also been suggested that
extremely high temperatures may also
increase the adverse effects of air pollution
(27). The limited data from laboratory stud-
ies on the combined effects of air pollution
with either heat stress or cold stress seem to

support the possibility of enhanced toxicity
ofCO associated with extreme temperatures
(28).

Our findings could also be explained by
unmeasured covariates that are correlated
with temperature. These might include sea-
sonal changes in diet, temporal variation in
rates of respiratory infection, or increases in
physical stress during the winter months.
Without a meaningful surrogate for these
exposures, we cannot exclude these covari-
ates as an explanation for the findings of
this study.

The assertion that CO and temperature
have a synergistic effect on CHF admission
rates requires consideration of biological
plausibility. Acute heart failure occurs
when the load on the heart exceeds its
capacity. Both cold and CO can increase
the load on the heart. Hence, as discussed
below in more detail, cold may modify the
effect ofCO on cardiovascular morbidity.

Exposure to cold air results in increased
heart rate, increased systolic and diastolic
blood pressure, and increased cardiac output
in young adults (29-31). This probably
results from sharp increases in sympathetic
activity and peripheral vasoconstriction (32),
a response also seen in subjects with coro-
nary artery disease (33) and CHF (34). The
available research indicates that this increase
in blood pressure is greater among older per-
sons (31,35). In addition, exposures to tem-
peratures as high as 12°C in still air for as lit-
tle as 1 hr can induce decreases in rectal tem-
perature (31,36) with greater decreases in
older men (35). Finally, hypoxic conditions
will increase the rise in diastolic blood pres-
sure and the degree of shivering associated
with cooling (36).

Each of these changes will place an
increased load on the failing heart.
Increased vascular resistance will require
increased cardiac work to maintain the
same output. Patients using vasodilators
may experience blunting of this response,
but will then be more susceptible to cool-
ing, which itself can place greater demand
on the heart. Shivering in particular will
require increased metabolic activity and
increased oxygen consumption (37).
Overall, laboratory studies demonstrate
that cooling can increase the workload on
the heart and cause oxygen demand to rise
substantially (38,39). It seems plausible
that exposure to cold air would amplify the
adverse effects of elevations in carboxyhe-
moglobin (COHb).

We did not observe an increase in the
effect of CO at high temperatures. This
may mean that our cut point for the high
temperature range was not high enough. It
is also possible that Chicago did not experi-
ence enough periods of extremely high
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temperatures during this time period to
allow us to detect an effect. Further studies
in areas with higher temperatures will be
required to determine if this relationship is
"U-shaped."

The impact of CO on CHF patients
has not been well studied, but in coronary
artery disease patients, this effect has been
clearly shown to decrease the time to angi-
na at COHb levels as low as 3.0% (2), and
perhaps even lower (3). It is possible that
this threshold for adverse effects may be
even lower among persons with CHF than
persons with coronary artery disease. Our
data indicate that exposure to cold air may
reduce this threshold still further. In this
way, susceptibiliry, thermal stress, and rela-
tively low levels of ambient CO may com-
bine to induce acute heart failure at an
individual level.

Our study suggests that the effect of
CO on hospital admissions for heart failure
may be temperature dependent, with the
magnitude of the effect increasing with
decreasing temperature. This synergy may
help to explain the association between
ambient CO and CHF admissions demon-
strated in other studies. Laboratory studies
and further epidemiological studies in
other cities with different climates will be
required to validate this hypothesis.
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